Kinetics

Unit 5

12.1 Reaction Rates

- - -

Reaction rate is defined as the change in concentration of a reactant or product per time.
$2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
In terms of reactants:
The rate will be negative because the reaction used up reactants and the concentration will decrease. So to keep the rate positive you need to use a negative sign in the equation.

$2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$

Rate $=-\Delta\left[\mathrm{NO}_{2}\right] / \Delta t$
In terms of products:
Since more product is being made the rate can be kept Positive.

NO: Rate $=\Delta[\mathrm{NO}] / \Delta t \quad$ Rate $=(2) \Delta\left[\mathrm{O}_{2}\right] / \Delta t$ Production of NO is twice that of O_{2}. (Coefficients)

Example

- - -

What is the chemical reaction?

Write the reaction rates:

12.2 Rate Laws: An Introduction

- - -

Chemical reactions are reversible. If we choose conditions where the reverse reaction is neglected, the reaction rate will depend only on the concentrations of the reactants.

For the decomposition of nitrogen dioxide we can write:

$$
\begin{array}{ll}
2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2} & \text { Rate }=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{\mathrm{n}} \\
\mathrm{k}= & \text { rate constant } \quad \mathrm{n}=\text { order of the reaction }
\end{array}
$$

Two Important Points

1. The concentration of the products do not appear in the rate law because the reaction rate is being studied under the conditions were the reverse reaction does not contribute to the overall rate.
2. The value of the exponent (n) must be determined by the experiment; it cannot be written from the balanced equation.

Summary of Rate Laws

- The differential rate law shows how the rate of the reaction depends on concentration.
- The integrated rate law show how concentrations of species in the reaction depend on time.
- Since only the forward reactions are considered, the rate laws will involve only concentrations of reactants.
- Both must be determined experiementally.

12.3 Determinations of the Rate Law

- Write the rate with respect to the reactants (Rate=k[A]n)
- Pick 2 trials and solve for the orders R_{1} / R_{2}
- Take one trial and solve for k.
- Use the units to solve for the unit of k.

Example 1

Example:

$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g)$

Experiment	Initial [NO]	Initial [O्2]	Initial Rate of For] $(\mathbf{M} / \mathbf{s})$
1	0.015	0.015	0.048
2	0.030	0.015	0.192
3	0.015	0.030	0.096
4	0.030	0.030	0.384

Example 2

Example:

Initial Rate of
 Decomposition of $\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{M} / \mathrm{s})$

Experiment Initial [$\mathrm{CH}_{3} \mathbf{C O C H}_{3}$]

1	6.0×10^{-3}	5.2×10^{-5}
2	9.0×10^{-3}	7.8×10^{-5}

Example 3

Example:

Initial
 Experiment

$$
\begin{array}{ll}
1 & 2.4 \times 10^{-2} \\
2 & 8.0 \times 10^{-3}
\end{array}
$$

6.0×10^{-6}
2.0×10^{-6}

Example 4

Example:

Experiment

Initial Initial [$\mathrm{NH}_{4}{ }^{+}$]
 $\left[\mathrm{NO}_{2}{ }^{-}\right.$]

Initial Rate of

1	0.24	0.10	7.2×10^{-6}
2	0.12	0.10	3.6×10^{-6}
3	0.12	0.15	5.4×10^{-6}

Example 5

Example:

Experiment

Initial Initial [NO]
 [Cl_{2}]

Initial Rate of

 Consumption of $\mathrm{Cl}_{2}(\mathrm{M} / \mathrm{s})$| 1 | 0.13 | 0.20 | 1.0×10^{-2} |
| :--- | :--- | :--- | :--- |
| 2 | 0.26 | 0.20 | 4.0×10^{-2} |
| 3 | 0.13 | 0.10 | 5.0×10^{-3} |

Example 6

Example:

Experiment	Initial $\left[\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}} \mathbf{B r}_{\mathbf{2}}\right]$	Initial $\left[\mathbf{I}^{-}\right]$	Initial Rate of Formation of $\mathbf{I}_{\mathbf{3}}-\mathbf{(M / s)}$
$\mathbf{1}$	0.127	0.102	6.45×10^{-5}
2	0.343	0.102	1.74×10^{-4}
3	0.203	0.125	1.26×10^{-4}

12.4 Integrated Rate Law- First Order Rate Laws

For first order reactions, if the concentration of the reactant is doubled, the rate of production will also be doubled.

Integrated rate law" $\ln [A]=-k t+\ln [A]_{0}$
The graph of this equation is a straight line for first order reactions.
$y=\ln [A] \quad x=t \quad m=-k \quad b=\ln [A]_{0}$

Graph of Rate Law

- - -

$$
\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=-k t+\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}
$$

(a)

(b)

Example 7

1. What is k for this reaction?
2. Calculate the concentration of the reactant at 150s after the start of the reaction.

Half-life of a first order reaction

Half life- time it takes the reacts to react half its concentration

It takes 100s for [A] to be halved in this reaction.

When $t=t_{1 / 2} \quad[A]=[A]_{9} / 2$
When integrated t1/2 =
0.693/k because the $\ln 2$ is
0.693

Example 8

— — —
A certain first-order reaction has a half-life of 20.0min. Calculate the rate constant for this reaction.

How much time is required for this reaction to be 75% completed?

Second Order Rate Law

- - -

Integrated $2^{\text {nd }}$ order rate law:

2nd Order Rate Law Explained

Doubling the concentration of

 A quadruples the rate of reaction. For second order reactions the plot of 1/[A] vs t is linear.
2nd Order Rate Law-Half Life

When $t-t_{1 / 2}$,

$$
[\mathrm{A}]=[\mathrm{A}]_{0} / 2
$$

A bunch of calculus...

$$
t_{1 / 2}=1 /\left(k[A]_{0}\right)
$$

First Order

vs. Second Order

Example 9

$\left[\mathbf{C}_{4} \mathbf{H}_{6}\right](\mathbf{M})$	Time (s)	$\mathbf{1 / [C _ { 4 } \mathbf { H } _ { 6 }]}$	$\operatorname{In}\left[\mathrm{C}_{4} \mathbf{H}_{6}\right]$
0.01000	0		
0.00625	1000		
0.00476	1800		
0.00370	2800		
0.00313	3600		
0.00270	4400		
0.00241	5200		
0.00208	6200		

Half- Live (First Order vs Second Order)

First Order:

- Depends on k
- Constant time is required to reduce the concentration by half.

Second Order:

- Depends on k and [A]。
- Each successive half life is double the preceding one.

Zero Order Rate Law

$$
\text { Rate }=k[A]_{0}=k
$$

Integrated rate law:

$$
\begin{aligned}
& {[\mathrm{A}]=-\mathrm{kt}+[\mathrm{A}]_{0}} \\
& \mathrm{t}_{1 / 2}=[\mathrm{A}]_{0} / 2 \mathrm{k}
\end{aligned}
$$

Step 1.

$$
\mathrm{N}_{2} \mathrm{O}(g) \longrightarrow \mathrm{N}_{2}(g)+\mathrm{O}(g)
$$

Step 2. $\quad \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{O}(g) \longrightarrow \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)$

In the first step $\mathrm{N}_{2} \mathrm{O}$ breaks apart
In the second step oxygen breaks away from $\mathrm{N}_{2} \mathrm{O}$
The second reaction the first 0 pulls away another 0 from the $\mathrm{N}_{2} \mathrm{O}$

0 is an intermediate which means that it is produced in the first reaction and used up in the second reaction.

Reaction Mechanism

A reaction mechanism is a series of elementary steps that must satisfy two requirements:

1. The sum of the elementary steps must give the overall balanced equation for the reaction.
2. The mechanism must agree with the experimentally determined rate law.

Molecularity-number of species that collide

Elementary Step	Molecularity	Rate Law
$A \longrightarrow$ product	Unimolecular	Rate $=k[A]$
$2 A$	\longrightarrow product	Bimolecular
$A+B$	Rate $=k[A]^{2}$	
$2 A+B$	\longrightarrow product	Bimolecular
	Termolecular	Rate $=k[A][B]$
		Rate $=k[A]^{2}[B]$

Rate Determining Step (aka: The SLOW step)

$$
\begin{aligned}
& \mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{NO} \quad \text { Slow } \\
&+ \mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2} \text { Fast } \\
& \mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}
\end{aligned}
$$

A multi-step reaction has one step that is the rate determining step. The overall rate cannot be faster than the SLOW step.

Example 10

The balanced equation for the reaction of the gaes nitrogen dioxide and fluorine is $2 \mathrm{NO}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$. The experimentally determined rate law is Rate=k[NO_{2}] [$\left.\mathrm{F}_{2}\right] \mathrm{A}$ suggested mechanism for this reaction is:

$$
\begin{aligned}
& 2 \mathrm{NO}_{2}+\mathrm{F}_{2}-->\mathrm{NO}_{2} \mathrm{~F}+\mathrm{F} \quad \text { Slow } \\
&+ \mathrm{F}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2} \mathrm{~F} \quad \text { Fast } \\
& \hline
\end{aligned}
$$

Is this an acceptable mechanism? Does it satisfy the 2 requirements?

Example 11

— — -
The decomposition of nitrous oxide is believed to occur by a two-step mechanism:

$\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{O}$	Slow
$\mathrm{N}_{2} \mathrm{O}+\mathrm{O} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$	Fast

Write the equation for the overall reaction.
Write the rate law for the overall reaction.

Example 12

Thēreaction $2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCl}$, obeys the rate law, Rate $k\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.$. The following mechanism has been proposed for this reaction:
$\mathrm{NO}+\mathrm{Cl}_{2} \rightarrow \mathrm{NOCl}_{2}$
$\mathrm{NOCl}_{2}+\mathrm{NO} \rightarrow 2 \mathrm{NOCl}$
What would the rate law be if the first step were rate determining?

Based on the observed rate law, what can we conclude about the relative rates of the two steps?

12.7 A Model for Chemical Kinetics

For the graph to the right:
The reaction is exothermic And ΔH is negative.

Catalyst

A substance that speeds up the reaction by lowering the activation energy, but does not participate in the reaction.

