1. The following data were obtained for the reaction $2 \text{ NO} + O_2 \rightarrow 2 \text{ NO}_2$:

Experiment	[NO] ₀	[O ₂] ₀	Initial rate, v ₀ (mol L ⁻¹ s ⁻¹)
1	0.12 M	0.05 M	0.12
2	0.12 M	0.10 M	0.24
3	0.24 M	0.05 M	0.48

(a) Write the rate law for the reaction. Explain your reasoning in arrivir

NO	Explain your reasoning	ig in arriving at your rate law.
.48 K [.24]	<u>Oa</u>	
-12 = - K [.12]	-024 [.10]m	Rate = K[NO] = [0
4 : an	13 [.05]m	
(n=2)	$\frac{a}{a}$	
(b) What is the overall ord	er of the reaction?	

(c) Determine the value of the rate constant.

2. The following data were obtained for the reaction $A + B + C \rightarrow products$:

Experiment	[A] ₀	[B] ₀	[C] ₀	Initial rate, v ₀ (mol L ⁻¹ s ⁻¹)
1	1.25 x 10 ⁻³ M	1.25 x 10 ⁻³ M	1.25 x 10-3 M	0.0087
2	$2.50 \times 10^{-3} M$	1.25 x 10 ⁻³ M	1.25 x 10 ⁻³ M	0.0037
3	$1.25 \times 10^{-3} M$	3.02 x 10-3 M	1.25 x 10-3 M	0.0174
4	$1.25 \times 10^{-3} M$	3.02 x 10-3 M	3.75 x 10-3 M	0.0308
5	$3.01 \times 10^{-3} M$	1.00 x 10-3 M	1.15 x 10-3 M	າ

(a) Write the rate law for the reaction. Explain your reasoning in arriving at your rate law. Role: KIAICBJUL.

$$\frac{[A]}{10174} = \frac{[a.5 \times 10^{-3}]^{n}}{[1.25 \times 10^{-3}]^{n}}$$

$$\frac{[a.5 \times 10^{-3}]^{n}}{[1.25 \times 10^{-3}]^{n}}$$

$$\frac{[a.5 \times 10^{-3}]^{n}}{[a.5 \times 10^{-3}]^{n}}$$

$$\frac{18J}{.0508} - \frac{(3.03 \times 10^{-3})^{m}}{(1.25 \times 10^{-3})^{m}}$$

$$\frac{(c)}{.457} = \frac{[3.75 \times 10^{-3}]^{6}}{[1.25 \times 10^{-3}]^{6}}$$

$$\frac{9 = 3}{9}$$

hat is the overall order of the reaction?

(c) Determine the value of the rate constant.

Determine the value of the rate constant.

$$|.0087 = ||K| ||.as \times 10^{-3}| ||.as \times 10^{-3}|^{3} ||.as \times 10^{-3}||.as \times 10^{-3}|^{3} ||.as \times 10^{-3}|^{3} ||.as \times 10^{-3}|^{3} ||$$

(d) Use the data to predict the reaction rate for experiment 5.

Use the data to predict the reaction rate for experiment 5.

Rake =
$$(2.85 \times 10^{12} \text{ M}^{-4} \text{ S}^{-1}) \times 3.01 \times 10^{-3}) \times (1.00 \times 10^{-3})^{2}$$

Rake = $(2.85 \times 10^{12} \text{ M}^{-4} \text{ S}^{-1}) \times 3.01 \times 10^{-3}) \times (1.00 \times 10^{-3})^{2}$

3. The following data were obtained for the reaction $A + B + C \rightarrow products$:

wing data were of the contract	btained for the r [A]0 (M)	eaction A + B + C [B] ₀ (M)	[C] ₀ (M)	Initial rate, Vo (mol L ⁻¹ s ⁻¹)
1	0.100	0.100	0.100	0.100
	0.200	0.100	0.100	7.200
3	0.200	0.300	0.100	0.400
4	0.100	0.100	0.400	No. 2 Sept. 2

(a) Write the rate law for the reaction. Explain your reasoning in arriving at your rate law.

(a) Write the rate law lot the reaction.
$$2m_{p}$$

A

Note the rate law lot the reaction. $2m_{p}$

Note the rate law lot the rate law lot the reaction. $2m_{p}$

Note the rate law lot the rate law l

(c) Determine the value of the rate constant.

$$\frac{100 = K[.100]^{3}[.100]^{3}[.100]}{K = 1.00 \times 10^{5} M^{-5}s^{-1}}$$

AP Chemistry Kinetics Classwork

1. The following data was determined experimentally for the reaction below.

$$O_2(g) + 2NO \rightarrow 2NO_2(g)$$

[O ₂]	[NO]	initial rate (M/s)
	1.30 x 10 ⁻² 1.30 x 10 ⁻² 2.60 x 10 ⁻² 1.30 x 10 ⁻² 3.90 x 10 ⁻²	Carlo

a) Determine the rate law

$$\frac{(02)}{(0.40\times10^{-3})^n} = \frac{(2.20\times10^{-2})^n}{(1.10\times10^{-2})^n}$$

b) Calculate the value for k

$$\frac{(NO)}{28.8 \times 10^{-3}} = \frac{[3.90 \times 10^{-3}]^{m}}{[3.60 \times 10^{-3}]^{m}}$$

$$\frac{28.8 \times 10^{-3}}{[3.60 \times 10^{-3}]^{m}}$$

$$\frac{2.25}{2.35} = 1.5 \text{ m}$$

3.21 x10-3= K (110x10-2) (1.30x10-2)

c) Calculate the rate of the reaction when the concentration of oxygen is 4.00×10^{-3} M and the concentration of NO is 3.00 x 10⁻³M.

Rate =
$$(1730)4^{-2}s^{-1})(4.00 \times 10^{-3}M)(3.00 \times 10^{-3}M)^2$$

Rate = $6.23 \times 10^{-5} M/S$

- 2. Based on the following reaction profile
 - a. How many intermediates are formed in the reaction $A \rightarrow C$?
 - b. How many activated complexes are there?
 - c. Which step is the fastest? \mathcal{J}
 - d. Is the reaction exothermic or endothermic?

exothermic

Energy

4 theore with the lower activation energy

Reaction pathway

The rate of the reaction $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$ Depends only on the concentration of aitrogen dioxide below 225°C. At a temperature below 225°C the following data were collected:

Time (s)	[NO ₂] (mol/L)
0	0.500
1.20×10^3	0.444
3.00×10^3	0.381
4.50×10^3	0.340
9.00×10^{3}	0.250
1.80 x 10⁴	0.174

* graph	DIC integrate (time.	ollowing data were c
0	72+	$\frac{2n}{}$

a. Determine the rate law

b. Determine the integrated law

$$\frac{1}{CNO2} = Kt + \frac{1}{CNO2}$$

c. Determine the value of the rate constant.

d. Calculate [NO₂] at 2.70 x 10^4 s after the start of the reaction.

$$\frac{1}{x} = (2.10 \times 10^{-4}) \times (2.70 \times 10^{4}) + \frac{1}{.500}$$

$$\frac{1}{x} = (3.10 \times 10^{-4}) \times (3.70 \times 10^{4}) + \frac{1}{.500}$$

3. A proposed mechanism for a reaction is

$$C_4H_9Br \longrightarrow C_4H_9^+ + Br^-$$
 Slow
 $C_4H_9^+ + H_2O \longrightarrow C_4H_9OH_2^+$ Find
 $C_4H_9OH_2^+ + H_2O \longrightarrow C_4H_9OH + H_3O^+$ Find

- a. Write the rate law expected for this mechanism Rate = K[C4H4Bc]
- b. What is the overall balanced equation? C4H4Br + $2H_{2}O_{3}$ Br $^{-3}$ C4H40H + $H_{3}O_{3}$
- c. Identify the reaction intermediates in the mechanism.