Radioactive Decay of Candium

Introduction

The rate of decay of a radioactive isotope of an element is measured in terms of its half-life. When a radioactive isotope decays, the decayed atoms form a daughter product. The half-life of a radioactive element is the time it takes for half of its atoms to decay into the daughter product. After two half-lives, one-fourth of the original isotope's atoms remain, and three-fourth have turned into the daughter product. After many more half-lives, a very small amount of the original parent isotope remains, and almost all of it has decayed into the daughter product.

Each radioactive isotope has its own characteristic half-life. For instance, the naturally occurring radioactive isotope of uranium (U-238) decays into thorium- 234 with a half-life of 4.5 billion years. This means that half of the original amount of uranium-238 still remains after this time. In contrast, some radioactive isotopes decay quickly. FOr instance, polonium -214 has a half-life of 0.00016 seconds.

Materials

M\& $M^{T M}$ candy pieces \quad Small dixie cup graph paper paper towel

Procedure

1. Take 100 atoms of candium (pieces of candy) and place onto your small dixie cup.
2. For half-life 0 , no time has passed and no atoms have decayed yet.
3. Place you hand over the top and gently shake for 10 seconds.
4. Gently pour out candy.
5. Count the number of pieces with the print side up. These atoms have "decayed". Record the number of undecayed on your data table.
6. Return only the pieces with the print side down to the cup.
7. Consume the "decayed atoms". YuM!
8. Place all undecayed candies back into your small cup, cover, and shake gently for 10 seconds.
9. Continue shaking, counting, and consuming until all the atoms have decayed.
10. Create a graph of the data. Staple to this lab.

Data and Observations

Total Time	\# of Undecayed Atoms
0	100

Post Lab Questions

1. What is a half-life?
2. What is the independent variable?

Dependent?
3. According to your graph, what was the half-life of the element candium in seconds?
4. Using the graph you created, what fraction of the atoms remain undecayed after 2 half-lives?
5. Based on your knowledge of half-life, is this what you expected? Why or why not.
6. What percentage of atoms remain undecayed after 3 half lives?
7. Based on your knowledge of half-life, is this what you expected? Why or why not.
8. What kind of function does your graph represent? (linear, exponential, etc.)

